Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Tropical Biomedicine ; : 420-434, 2021.
Article in English | WPRIM | ID: wpr-906555

ABSTRACT

@#Trichinellosis is an important zoonotic parasitic disease worldwide and is principally caused by ingesting animal meat containing Trichinella infective larvae. Aspartyl aminopeptidase is an intracytoplasmic metalloproteinase that specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids (aspartic acid and glutamate), and plays an important role in the metabolism, growth and development of organisms. In this study, a novel T. spiralis aspartyl aminopeptidase (TsAAP) was cloned and expressed, and its biological properties and roles in worm growth and development were investigated. The results revealed that TsAAP transcription and expression in diverse T. spiralis stages were detected by RT-PCR and Western blotting, and primarily localized at cuticle, stichosome and intrauterine embryos of this nematode by immunofluorescence test. rTsAAP has the enzymatic activity of native AAP to hydrolyze the substrate H-Glu-pNA. There was a specific binding between rTsAAP and murine erythrocyte, and the binding site was localized in erythrocyte membrane proteins. Silencing of TsAAP gene by specific dsRNA significantly reduced the TsAAP expression, enzymatic activity, intestinal worm burdens and female fecundity. The results demonstrated that TsAAP participates in the growth, development and fecundity of T. spiralis and it might be a potential target molecule for anti-Trichinella vaccines.

2.
Tropical Biomedicine ; : 160-171, 2021.
Article in English | WPRIM | ID: wpr-886549

ABSTRACT

@#Trichinella spiralis is an important foodborne zoonotic parasite and it is necessary to develop vaccine to prevent T. spiralis infection in food animals. T. spiralis aspartic protease-2 (TsASP2) has been demonstrated to play a crucial role in larval invasion of intestinal epithelium cells (IECs). The purpose of this study was to assess the interaction between TsASP2 and IECs and to investigate the immune protection elicited by vaccination with rTsASP2. The results showed that the enzymatic activity of native aspartic protease was detected in crude proteins of all T. spiralis development stages other than NBL stage, the highest activity was observed in the IIL stage. The results of Western blot showed that TsASP2 protein was expressed at ML, IIL and AW but not NBL, and the TsASP2 expression level at IIL stage was significantly higher than those of other three worm stages (P < 0.05). The specific binding between rTsASP2 and IECs was observed by immunofluorescence test (IFT) and confocal microscopy, and the binding site was localized at the IEC membrane and this binding ability was inhibited by aspartic protease specific inhibitor pepstain A. The results of ELISA showed that the binding ability was protein dose-dependent. Vaccination with rTsASP2 triggered a mixed Th1/Th2 humoral and mucosal immune responses, as demonstrated by the elevation levels of Th1/Th2 cytokines (IFN-γ and IL-4) secreted by the spleen and mesenteric lymph nodes (MLNs) of immunized mice. The mice vaccinated with rTsASP2 exhibited a 54.17% reduction in enteral adult worms and a 54.58% reduction in muscle larvae after T. spiralis challenge. The results demonstrated that TsASP2 might be a potential molecular target for anti-Trichinella vaccines.

3.
Tropical Biomedicine ; : 458-470, 2020.
Article in English | WPRIM | ID: wpr-823251

ABSTRACT

@#A T. spiralis serine protease 1.2 (TsSP1.2) was identified in the muscle larvae (ML) and intestinal larvae surface/excretory–secretory (ES) proteins by immunoproteomics. The aim of this study was to determine the TsSP1.2 function in the process of T. spiralis intrusion, growth and reproduction by using RNA interference (RNAi). RNAi was used to silence the expression of TsSP1.2 mRNA and protein in the nematode. On 2 days after the ML were electroporated with 2 µM of TsSP1.2-specific siRNA 534, TsSP1.2 mRNA and protein expression declined in 56.44 and 84.48%, respectively, compared with untreated ML. Although TsSP1.2 silencing did not impair worm viability, larval intrusion of intestinal epithelium cells (IEC) was suppressed by 57.18% (P < 0.01) and the suppression was siRNA-dose dependent (r = 0.976). Infection of mice with siRNA 534 transfected ML produced a 57.16% reduction of enteral adult burden and 71.46% reduction of muscle larva burden (P < 0.05). Moreover, silencing of TsSP1.2 gene in ML resulted in worm development impediment and reduction of female fertility. The results showed that silencing of TsSP1.2 by RNAi inhibited larval intrusion and development, and reduced female fecundity. TsSP1.2 plays a crucial role for worm invasion and development in T. spiralis life cycle, and is a potential vaccine/drug target against Trichinella infection.

4.
Tropical Biomedicine ; : 792-802, 2019.
Article in English | WPRIM | ID: wpr-780664

ABSTRACT

@#A putative serine protease of T. spiralis (TsSP) was expressed in Escherichia coli and its potential as a diagnostic antigen was primarily assessed in this study. Anti-Trichinella IgG in serum samples from T. spiralis different animal hosts (mice, rats, pigs and rabbits) were detected on Western blot analysis with rTsSP. Anti-Trichinella antibodies were detected in 100% (30/30) of experimentally infected mice by rTsSP-ELISA. Cross-reactions of rTsSPELISA were not found with sera from mice infected with other parasites (S. erinaceieuropaei, S. japonicum, C. sinensis, A. cantonensis and T. gondii) and sera from normal mice. There was no statistical difference in antibody detection rate among mice infected with the encapsulated Trichinella species (T. spiralis, T. nativa, T. britovi, and T. nelsoni) (P>0.05). The results of rTsSP-ELISA showed that serum specific antibody IgG in mice infected with 100 or 500 T. spiralis muscle larvae (ML) were detectable early at 7-8 dpi, but not detected by ML ES antigen-ELISA prior to 10-12 dpi. Specific anti-Trichinella IgG was detected in 100% (18/18) of infected pigs by rTsSP-ELISA and ES-ELISA, but no specific antibodies was not detected in 20 conventionally raised normal pigs by two antigens. The results showed the rTsSP had the potential for early serodiagnosis of animal Trichinella infection, however it requires to be assayed with early infection sera of swine infected with Trichinella and other parasites.

SELECTION OF CITATIONS
SEARCH DETAIL